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Abstract 
 

Financial Time Series often exhibit either chaotic or persistent or mean reversing behaviour. This behaviour 

could be quantified through Chaotic Exponent which ranges from zero to one. The rescaled range technique 

developed for hydrology by Hurst is applied in financial time series to estimate chaotic exponents which 

determines whether financial time series behaviour is purely chaotic white noise or any pattern exists. We have 

computed Chaotic Exponent coefficient for nine shares traded in Kula Lumpur Stock Exchange, nine popular 

stock market indices and nine selected exchange rates. As per theory pure random time series which behaves in a 

chaotic form cannot be forecasted, but somewhat skewed or non-normal financial time series could be forecasted. 

The forecasts could be used in several financial decisions like pricing of derivatives and very useful in hedging 

decisions. Our results indicate that the chaotic exponent of the selected financial time series is not consistent. 

They are either mean reversing or persistent, occasionally they show pure randomness. This proves that the 

forecasting of financial time series is relevant for hedging decisions.   
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Introduction 
 

The financing function which started in late fifties with net income and net operating income theories underwent 

several changes. Borrowing and value of firm, tested by researchers in the last few decades has gone to the 

background giving way for structured financial products and non linear exotic options whose pay offs are not at 

all linear. The financial engineers now design methodologies to price these products based on some expectations 

of return distributions. These engineers apply very strong assumptions while modeling returns for forecasting. 

One of the major assumptions is that the returns generated by any financial time series (FTS) whether share 

prices, exchange rates or market indices are normally distributed and they move at random. This assumption is 

disputed by many researchers (Aparicio et al., 1999, Gilmore 1993, Kyrtsou et al., 2004, Muckley 2004, Sewell et 

al., 1996, Varson et al., 1995).  Risk management requires an accurate forecasting model to quantify the future 

price path of shares and other FTS. The forecasted price path is efficiently applied in managing the risks. Risk 

management involves managing the risk at minimum cost by choosing right risk mitigating instrument which 

include an array of financial instruments like forward contracts, futures contracts, option contracts and swaps.   
 

These instruments’ price movements are cointegrated with the prices of underlyings on which they issued and 

they closely follow the price path of the underlyings. Any deviation is quickly corrected and mostly they derive 

their prices from their underlying.   The risks in financial instruments arise due to the ever fluctuating nature of 

their prices. Till last decade the loan interest rate was fixed over time but at present this has become variable. 

Good forecasting models are needed to forecast and plan these instruments’ cash flows. Linear forecasting models 

like regression etc are out of pace. Modern models like ARIMA, GARCH and exponential models rely on 

normality and stationary assumptions. Many research studies point out deficiencies in forecasting models due to 

the strong assumptions on which they are built (Urrutia et al., 2002, 2006, Schittenkopf et al., 2000). Empirical 

studies which use the distributive models frequently fail due to the presence of various forms of distributions like 

normal, lognormal, t, exponential etc. There is no consensus among researchers regarding the character, structure 

and distributions these returns generate. Two popular distributions are applied as of date are the normal (also 

known as Gaussian or Weinar) and fat tail ‘t’ distribution to model returns.  
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Lognormal distribution has become highly popular over the other distributions in modern financial engineering as 

the returns show non normality, nonlinearity and geometric growth characters (Baillie, 1989). After the arrival of 

Black Scholes model of option pricing the lognormal distribution has taken a center stage in financial engineering. 

Modeling of random movements in pollen particles started in 1820s by Brown and followed by Einstein  and 

established by Weiner.  
 

Brownian Motion  
 

Brown a botanist studied the pollen particles movement suspended on water. He came to the conclusion that the 

pollen particles move randomly due to the innumerable bombardment of water molecules on it. Similar analogy is 

given for financial time series returns. Innumerable small trading transactions hit the prices constantly and hence 

the prices move randomly (Mouck, 1998). Brownian motion is purely random and any movement in time is 

purely stochastic and it does not depend on the previous motions or directions (Kyrtsou, 2004, Small, 2003). It is 

like dice throw in snake ladder game where the second throw’s outcome does not depend on the first throw’s 

result. The spaces are identically distributed in the dice. The distribution is Gaussian (normal) and the outcomes 

are purely random and there is no pattern. Similar analogy is applied in financial time series (FTS). The share 

prices, share market indices, interest rates and the exchange rates’ generate returns which move at random and 

any movement in time is purely stochastic and it does not depend on the previous motions and there is no 

memory. Whatever oscillations noticed is pure white noise and no property, pattern or trend could be observed.  
 

According to Markove process the past FTS returns cannot be used to predict the future returns or prices in any 

meaningful way as the FTS returns have no memory (Barkoulas, 1999, Cheung, Y.W. 1993, Lo A.W. 1991). The 

next price or return depends only on the previous value and not on earlier values. The above opinions are disputed 

by several researchers and they point out the FTS returns are not exactly Gaussian. These FTS returns show 

persistence behaviour (meaning that an increase in return is followed by a series of increases in return and vice 

versa). Some FTS returns show anti persistence or mean reversing behaviour (an increase in return will be 

followed by a series of decrease in returns). Many earlier research studies have pointed out that the FTS returns 

exhibit fat tails through serial correlations and run tests. The skewness and kurtosis measures are also utilised to 

support their view (Claire 2001, Fox 1986, Robinson 1995). They argue since the FTS returns are not exactly 

Gaussian therefore the prediction and forecasting models are relevant. They point out chartist approach and the 

derivative pricing etc to strengthen their argument. The Black and Scholes model and most of the modern 

financial asset price forecasting models assume Brownian motion and Weiner process in FTS returns and the 

returns of these FTS returns are normally distributed. Based on these strong assumptions the option premiums are 

calculated and the hedging decisions are made by the financial analysts, speculators and arbitrageurs.  
 

Significance 
 

It is therefore interesting to test what is the real position of FTS returns generated by shares, indices and exchange 

rates etc. The objective of this paper is to assess whether the FTS returns are purely white noise or any property or 

pattern exist. If shocks are pure white noise all forecasting models will become useless. We have attempted to 

assess whether the FTS returns show randomness or otherwise.Our argument goes in the following lines. The FTS 

returns will exhibit some pattern in the past and the same pattern or behavior will tend to continue in the future. 

All of a sudden FTS returns will not show altogether a new pattern unless there is an external random exogenous 

natural event or a disaster. The process of change will be gradual and mostly dependent on the nature of 

information which is disseminated. These patterns were assessed in the past by serial autocorrelations and run 

tests. The chaotic exponent (CE) is a new arrival in this domain to quantify the randomness or otherwise present 

in FTS returns (Kang 2004).The remaining part of this paper is organized into four sections. Section two explains 

the statistical background and section three explains the methodology adopted in this paper. The final section 

interprets the results and concludes the paper.    
 

Chaotic Exponent (CE) 
 

CE was originally applied in studying the river Nile’s water flow pattern and now the same technique is applied in 

many branches of science including finance.  The stochastic process (Brownian motion / Weiner process) present 

in FTS returns is quantified in CE. This exponent is computed by rescaled range (RSR) technique (Booth 1982).  

This method applies the natural log-time as independent variable and natural log-FTS returns as dependent 

variable in power law framework to compute the CE either through regression or through loglog plot.  



International Journal of Business and Social Science                            Vol. 2 No. 3 [Special Issue - January 2011] 

79 

 

The CE value lies in the range of 0 < C < 1. An exponent in the range of 0.45 to 0.55 is interpreted as a pure 

stochastic random movement and whatever fluctuations noticed in FTS returns are a pure white noise and there is 

no trend or pattern. In other words it is a pure Brownian motion and exhibits a Gaussian distribution. Planning, 

forecasting, hedging and controlling are meaningless when the FTS returns are a pure white noise. If the CE is 

less than 0.45, it is interpreted as anti-persistence which means a price fall will be in all probabilities will follow 

price increases for sometime in the future. Technically it is described as mean reversing process. CE of more than 

0.55 indicates persistence behaviour meaning a price increase will be followed by a few price increases in all 

probabilities and vice versa for sometime in the near future. 
 

Methodology 
 

The prices pertaining to share, indices and exchange rates are provided in the column vector form, Pi to calculate 

the CE where i = 1, 2 . . . N. N is the length of the vector. Financial literature is skeptical about the above vector of 

FTS because the FTS prices are non stationary meaning that they have no stable mean and variance. Hence the 

FTS prices are detrended to get returns as these returns are stable in mean and variance. Therefore the returns are 

important than the FTS prices in modeling. The change in prices is the returns and they are computed in several 

ways but all show almost similar results. 
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rt-1,t = relative returns 
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rt-1,t = geometric returns 
 

where p  = Price, t  =  Time in days, ln = Natural logarithm 
 

From the vector of share returns the mean and standard deviation are computed as follows. 
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Where ζ = mean returns, σ = standard deviation of returns, n = number of returns  
 

FTS return deviations are computed with the above mean 
 

di = ri- ζ                                                                                    (6) 
 

Where, d = deviation (shock) 
 

The individual deviations (shocks) are added consecutively to get cumulative deviations vector whose values will 

show the cumulative noise present in FTS at every stage. Both positive and negative shocks are added to get 

cumulative vector of deviations.  
         

                             cd1  =  d1 

        cd2  =  cd1+d2 

           cd3  =  cd2+d3 
                     
 

cdn  =  cdn-1+dn                                                                                                   (7) 
 

where , cdn = cumulative deviations 

The cumulative return vector will not grow continuously as there are positive and negative returns. In the case of 

more positive returns the cumulative returns will grow and vice versa. If the returns are distributed evenly 

between positive and negative then the cumulative returns will be stagnant.  
 

Rescaled Range (RSR) 
 

From the vector of cumulative deviations, a range is computed by subtracting the minimum of the cumulative 

deviation from the maximum. Then this range is divided by the standard deviation to get the rescaled range.  
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Where RSR = rescaled range 
 

Several values are required to fit a straight line by the method of least squares and to compute the slope of a line 

through regression. Therefore to get more data the same cumulative deviation vector is divided into two equal 

halves and applying the same rescaled range procedure applied above another two rescaled ranges are computed. 

The average is taken as the second rescaled range.  
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RSR2 = (rescaled range of first half + rescaled range of the second half)/2 
 

If the number of returns is in 2
n
 then

 
the rescaled range could be applied efficiently as the returns could be 

recursively scaled in equal halves. If not after some iterations it will go out of proportion. Recursively several 

non-overlapping segments of equal length of cumulative returns are taken and their average rescaled ranges are 

computed. 
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After several iterations two vectors of values emerge. The first vector is the dependent variable, the rescaled range 

of returns and the second vector is the number of days whose returns are included in every segment. Then the 

logarithms of both vectors are computed. 
   

Column Vector 1  Column Vector 2  

RSR (dependent variable) Ln log RSR Days included in every segment 

(independent variable) 

Ln log Days 

RSR1 Ln log (RSRi) t Ln log (ti) 

* * * * 

* * * * 

* * * * 

RSRn Ln log (RSRn) * Ln log (tn) 
 

With the natural logarithmic vectors (RSR and t), regression coefficient is computed taking ln log rescaled range 

returns as the dependent variable and the ln log number of days as independent variable. The resultant regression 

slope coefficient is the Chaotic Exponent. 
βαty =                                                                                                               (11) 

 

Ln log Y  =  α + β ln log t                                                                                   (12) 

Ln log (RSR)  =  α + β ln log (t)                                                                          (13) 

   CE  =  β                                                                                                           (14) 
CE

tr *α=                                                                                                          (15) 
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Data 
 

Nine shares traded in Kuala Lumpur Stock Exchange (KLSE) were selected at random and their closing prices 

were downloaded from Yahoo finance website, for ten years from January 2000 to December 2009. There were 

2450 closing prices excluding the holidays for this period of ten years. The prices relating to the last four years i.e. 

from January 2006 to December 2009 were considered for short-term (one year) CE calculations. For long term 

CE, out of 2450 prices recent 2048 prices were considered and the remaining data were discarded. This is to 

satisfy the 2
n
 rule of power law.  The CE could be effectively calculated if the data is in the powers of two as the 

rescale range requires the data to be recursively divided into two equal halves.   
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Share market Indices 
 

The stock market index is another FTS which is a weighted average price of all shares traded in a stock exchange. 

The unique feature of this index is that it combines all positive price movements and negative price movements in 

a day and hence there is a smoothing effect. The principal difference between the share price and the stock index 

is that the stock index is the weighted average of all shares. It represents all macro economic variables and hence 

there will be no company specific factor could influence it. But the individual company share price will be 

influenced by company specific factors. The indices of KLSE, Germany, Australia, UK, Singapore, NIKKE and 

US indices Dow Jones, NASDAQ and Std & Poor were downloaded from Yahoo finance and the same procedure 

applied for share prices is applied to calculate CE of indices.  

Exchange rates 

Exchange rates of nine currencies in relation to Ringgit Malaysia were downloaded from Pacific Exchange rate 

services web site. The currencies chosen are stronger than Ringgit meaning that for one unit of foreign currency 

we have to pay more than one Ringgit. The soft currencies were left out due to their larger volatility and 

instability. The US dollar was omitted because the US dollar was pegged to Ringgit at RM 3.80 till July 2005 and 

after depegged. The USD exchange rate therefore gives non continuous extreme data is an outlier hence omitted 

from analysis. To calculate CE for exchange rates the same procedure adopted in shares and indices is applied 

here. The main difference between share price and the exchange rates is the countries involved. Share price 

movements are influenced by company specific factors and country specific factors, the indices are influenced 

only by macro economic factors pertaining to the specific country but foreign exchange rates are sensitive to the 

relative macro economic variables of host and home countries (Diebold 1990). Therefore the CEs of indices and 

exchange rates will be more consistent and normally distributed when compared with share prices. 
 

Results and Discussion 
 

The long-term CEs and short-term CEs have been computed by using the specific years’ closing prices data. The 

selected shares’ CEs are given below. 
 

Table 1. Chaotic Exponents of selected shares 
 

Company 2006 2007 2008 2009 10 years 

OSK 0.443** 0.677* 0.390** 0.527 0.723* 

BERJAYA TOTO 0.558* 0.601* 0.538 0.272** 0.686* 

IOIPROP 0.345** 0.569* 0.497 0.376** 0.613* 

OYL 0.489 0.674* 0.512 0.404** 0.560* 

YTLPOWER 0.594* 0.332** 0.412** 0.587* 0.543 

IOI PROP 0.284** 0.442** 0.183** 0.597* 0.503 

ANN JOO 0.263** 0.521 0.416** 0.781* 0.471 

TYLCORP 0.418** 0.580* 0.233** 0.201** 0.431** 

JASA TIASA 0.290** 0.344** 0.629* 0.743* 0.425** 

  * CEs more than 0.55 indicate persistent behaviour  

** CEs less than 0.45 indicate anti-persistent behaviour 

     CEs between 0.45 and 0.55 indicate stochastic behaviour 
 

The long-term CEs for different companies are sorted in descending order. Four companies show persistent 

behaviour, three companies show stochastic behaviour and two companies exhibit anti-persistent behaviour. 

Among the share CEs there is no uniformity in the long run. If we look short-term CEs same mixed pattern is 

observed. In 2006 six companies show anti-persistent behaviour, two companies show persistent behaviour. Only 

one company show random behaviour.  Similar mixed pattern could be seen in 2007, 2008 and 2009. When we 

compare the results company-wise the same inconsistent behaviour is observed.  None of the companies show 

uniform behaviour. IOI properties and TYL corporation show anti-persistent behaviour in three years. All other 

companies show mixed patterns over the years. These results imply two things. Firstly, the share returns are not 

truly random as they do not show any consistency either in the short-run or in the long-run. As pointed out by 

earlier researchers through different statistical tests that the share returns do not exhibit pure normality. There is 

fat tail, skewness and kurtosis which make the forecasting relevant. The chartist approach also advocates that the 

share returns are not absolutely normally distributed.  Secondly, the market is not so efficient because most of the 

company share prices either show persistent or anti-persistent behaviour. Hence forecasting and hedging are 

relevant in KLSE. 
 



The special issue on Behavioral and Social Science           © Centre for Promoting Ideas, USA            www.ijbssnet.com 

82 

 

Table 2.  Chaotic Exponents of selected indices 
 

Indices 2006 2007 2008 2009 10 years 

KLSE 0.439** 0.726* 0.724* 0.548 0.605* 

Australia  0.639* 0.596* 0.575* 0.196** 0.567* 

Germany  0.614* 0.421** 0.553* 0.429** 0.530 

NASDAQ 0.574* 0.428** 0.48 0.445** 0.515 

Singapore  0.392** 0.524 0.412** 0.606* 0.494 

NIKKE 0.738* 0.336** 0.400** 0.493 0.472 

Std & Poor 0.449** 0.331** 0.533 0.414** 0.446** 

UK  0.563* 0.344** 0.435** 0.236** 0.409** 

Dow Jones 0.318** 0.294** 0.532 0.414** 0.402** 

  * CEs more than 0.55 indicate persistent behaviour  

** CEs less than 0.45 indicate anti-persistent behaviour 

     CEs between 0.45 and 0.55 indicate stochastic behaviour 
 

The long term CEs for different indices have been sorted in the descending order and reported. KLSE and 

Australian indices show persistent behaviour, Std & poor, UK and Dow Jones indices show anti-persistent 

behaviour and the remaining indices exhibit stochastic behaviour. Short term indices also show inconsistency. Out 

of 36 short-term CEs calculated over a four year period 11 times the indices show persistent behaviour, 19 times 

anti-persistent behaviour and six times stochastic behaviour. Short-term country wise analysis show anti persistent 

behaviour for Dow, UK and Std & Poor. Even in these indices one year index is not anti persistent. KLSE, 

Germany, Singapore NASDAQ and NIKKE show mixed CEs. Australia shows persistent behaviour. Contrary to 

our expectations even the indices show mixed pattern. It implies that even weighted average of prices (indices) in 

the stock market do not remove the random behaviour. Even the advanced countries’ stock market indices do not 

show consistent behaviour.  The indices also behave like shares and there is no uniqueness in indices.  
 

Table 3. Chaotic Exponents of selected exchange rates 
 

Currency 2006 2007 2008 2009 10 years 

KRW 0.642* 0.605* 0.483 0.503 0.582* 

NZD 0.634* 0.612* 0.363** 0.415** 0.544 

GBP 0.455 0.617* 0.416** 0.522 0.501 

EUR 0.562* 0.530 0.376** 0.283** 0.460 

JPY 0.454 0.358** 0.444** 0.454 0.458 

CHF 0.538 0.513 0.371** 0.345** 0.430** 

CAD 0.310** 0.491 0.455 0.456 0.428** 

AUD 0.437** 0.598* 0.427** 0.205** 0.411** 

MXN 0.602* 0.417** 0.174** 0.455 0.365** 

  * CEs more than 0.55 indicate persistent behaviour  

** CEs less than 0.45 indicate anti-persistent behaviour 

     CEs between 0.45 and 0.55 indicate stochastic behaviour 
 

The CEs of exchange rates also behave similar to shares and indices. More anti persistent behaviour could be seen 

over the years. Out of 36 indices in total 15 indices show anti persistent behaviour in the study period. Eight 

indices show persistent behaviour and 13 exchange rates show stochastic behaviour.  The long-run CEs results are 

also mixed. Four exchange rates show anti-persistent behaviour, one persistent behaviour and another four 

currencies show stochastic behaviour. Currency wise analysis results also show anti-persistent behaviour by 

Australian Dollar, stochastic behaviour by Canadian Dollar and the other currencies  show a mixed pattern. Since 

23 CEs are not stochastic we could confirm even the exchange rate market is not purely Brownian meaning that 

the distributions are not purely normal. It may be somewhat skewed and may be with fat tails.  
 

 

Conclusion 
 

The financial time series of different categories show different chaotic exponents and they are not consistent. Both 

the short-term and long-term chaotic exponents show mixed pattern and they are not consistently close to 0.5 as 

expected by efficient market theory. Majority of FTS returns show either persistent or anti-persistent behaviour, 

only a few FTS returns show stochastic behaviour. This clearly shows that there is non randomness and fat tails in 

FTS and hence the forecasting and hedging decisions are relevant. 
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The Markovian principle advocates that there is no memory in FTS returns and the current prices dependent only 

on the previous price. No one can predict the future returns with the help of past data are effectively nullified from 

our results. The time series analysed  above are not purely Brownian (Weiner process) motions, there is some sort 

of non normality. Our findings are important which support the chartist approach of forecasting of time series as 

appropriate. The Gaussian distribution assumption widely applied in Value at Risk (VaR) calculations, ARIMA 

and GARCH modeling and pricing of derivatives under Black and Scholes model are approximations and are not 

accurate. This approximation may lead to mispricing of derivatives. 
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